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Correlation functions in the factorization approach of nonextensive quantum statistics

Marcelo R. Ubriaco*
Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, P. O. Box 23343, Rı´o Piedras,
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We study the long-range behavior of a gas whose partition function depends on a parameterq and it has been
claimed to be a good approximation to the partition function proposed in the formulation of nonextensive
statistical mechanics. We compare our results, at large temperatures and at the critical point, with the case of
Boltzmann-Gibbs thermodynamics for the case of a Bose-Einstein gas. In particular, we find that for all
temperatures the long-range correlations in a Bose gas decrease when the value ofq departs from the standard
valueq51.

PACS number~s!: 05.30.2d
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I. INTRODUCTION

The formulation of nonextensive statistical mechanics@1#
has raised numerous questions regarding its relevance to
tems with long-range interactions, long-range microsco
memory, or multifractal properties@2#. This formalism can
also be understood as a generalization of Boltzmann-G
statistics, opening the possibility to gain a theoretical insi
on the thermodynamics of systems whose behavior dep
from Boltzmann-Gibbs statistical mechanics. The gene
ized entropy

Sq5
k

q21 S 12(
R

pR
q D ~1!

is a function of the probabilitypR for the ensemble to be in
the stateR and a real parameterq. Equation~1! becomes the
Shannon entropy asq→1. In addition, Tsallis’ entropy
shares all the properties of the Shannon entropy except
of additivity. Considering two independent systemsS and
S8, the entropySq satisfies the pseudoadditivity property

Sq
SøS8

k
5

Sq
S

k
1

Sq
S8

k
1~12q!

Sq
S

k

Sq
S8

k
. ~2!

The probability distribution that results from extremizing t
entropy with the constraints

(
R

pR51 ~3!

and

^E&5(
R

pR
qER ~4!

is given by the equation

pR5
@11b~q21!~ER2mN!#1/(12q)

Zq
, ~5!

with the partition function
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Zq5(
R

@11b~q21!~ER2mN!#1/(12q) ~6!

and the total energyER5( jnj« j . Due to the mathematica
complexity of the partition function in Eq.~6!, it has been-
necessary to study the validity of certain approximation p
cedures. Thus, the study of the consequences of nonexte
ity has been mainly focused on either assuming a value
q'1 @3# or by approximating the partition function in Eq
~6! by a factorized partition function@4#

Z5)
j 50

(
nj 50

@11b~q21!nj~« j2m!#1/(q21). ~7!

The factorization approach has been shown@5# to be a good
approximation to the Tsallis partition function outside a c
tain narrow temperature interval that shifts to higher valu
of T when the number of energy levels increases. An ap
cation to the Ising model and blackbody radiation can
found in Refs.@6# and @7#, respectively. In this approxima
tion, the average number of particles with energy« is given
by the function

^n&5
1

@11b~q21!~«2m!#1/(q21)1a
, ~8!

wherea50,21,11 for Maxwell-Boltzmann, Bose-Einstein
and Fermi-Dirac cases, respectively. It is important to rem
that the function̂ n& has also been obtained@8# by extrem-
izing the entropy related to the generalized dimensions o
fractal set. It has also been pointed out@10# that nonextensive
thermodynamics could also be understood in terms ofq de-
formations and possibly with the theory of quantum grou
Along this line of work, in Ref.@9# we made a study of the
basic thermodynamics that result from the particle distrib
tion functions in Eq.~8! for classical and quantum gases.
that article we showed that the high-temperature behavio
consistent with the thermodynamical limit provided that t
internal energy is calculated according to the equation

^U&5
4pV

h3 E
0

` p2

2m
^n~p!&qp2dp. ~9!
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By introducing the usual creation and annihilation opera
formalism, we found that the boson Hamiltonian that leads
the particle distribution, fora521, in Eq. ~8! is written as

K̂5(
j 50

~« j2m!f̄ jf j , ~10!

where the operatorf j and its adjointf̂ j satisfy a deformed
boson algebra. However, a comparison of the heat capa

and entropy functions, in Ref.@9#, for systems with a particle
distribution function as given by Eq.~8! with those for Bose
and Fermi gases described by quantum group invar
Hamiltonians@11# shows that nonextensivity is unrelated
quantum group invariance.

In this paper we calculate the correlation function for b
son systems with a particle distribution function as given
Eq. ~8!. Our main motivation in studying this system is tw
fold. First, it is of theoretical interest to study a thermod
namics system which obeys a statistical mechanics that
eralizes Boltzmann-Gibbs statistics. Second, a calculatio
the correlation functions will give us an insight into the lon
range behavior dependence of these thermodynamical
tems on the parameterq. Our calculations will show in a
concrete fashion the relation betweenq and long-range be
havior, and will indicate whether the thermodynamics res
ing from Eq. ~8!, proposed in Ref.@4#, has the long-range
behavior expected to be present in nonextensive therm
namics. In Sec. II we calculate the correlation function
qÞ1 and discuss the results for some particular values
this parameter. We specialize our discussion to the beha
near the critical temperatureTc and at large values ofT. In
Sec. III we summarize our results.

II. CORRELATION FUNCTIONS

According to our previous work@9#, the parameterq can-
not be any real number but its values are restricted to th
such that 1/(q21) is an integer. In addition, the thermod
namic functions are well defined only in the interval 1<q

FIG. 1. The functionf 52p1/2^n&1/3j, where^n& is the average
number of particles per volume andj is the correlation length a
high temperatures for the cases ofq51,6/5,3/2 as a function o
T/Tcritical . Tcritical refers to the critical temperature for each value
q. This graph shows that the correlation length decreases as
value ofq increases.
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<1.5. The correlation for a Bose gas with particle distrib
tion according to Eq.~8! is given by

G~R!5
1

V (
k

eik"R

@11b~q21!~«2m!#1/(q21)21
. ~11!

As usual, this summation can be approximated by an in
gration overk, leading after integration over the angles f
d53 to the equation

G~R!5
^N0&

V
1

2

p1/4R1/2~lAq21!5/2

3E
0

`

x3/2(
j 51

`

@11a~q21!1x2#2 j /(q21)

3J1/2~2p1/2Rx/lAq21!dx, ~12!

where the new variablex25b(q21)k2\2/2m and, as usual,
a52bm and l is the thermal wavelength. The integral
Eq. ~12! is tabulated@12#

E
0

` Jn~bx!

~x21c2!m11
xn11dx5

cn2mbm

2mG~m11!
Kn2m~cb!,

~13!

where 21,Ren,Re(2m13/2), c.0, and b.0. It is
simple to check that all these inequalities are satisfied for
the allowed values ofq in the interval 1<q<1.5. Defining a
length parameterx,l,

x5
l

2Ap
A q21

11a~q21!
, ~14!

and by use of the integral representation

Kn~zx!5
G~n11/2!

xnG~1/2!
~2z!nE

0

` cos~xt!

~ t21z2!n11/2
dt, ~15!

the correlation function reduces to the expression

f
he

FIG. 2. The behavior ofa52bm as a function of the tempera
ture for the casesq51,6/5,3/2, indicating that for low temperature
a Bose-Einstein gas is more strongly correlated forq51.
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G~R!5
1

pRl2~q21!
E

0

`

cos~ t ! (
n51

F ~R/x!2

@11a~q21!#@ t21~R/x!2#
G n/(q21)21

dt. ~16!

Once we perform the summation, we get a set of integrals in terms of elementary functions. These integrals are all
@13# and the correlation function for some values ofq follows,

G~R!5H ~1/Rl2!@e2R/j2e2A(R/j)2132p(R/l)2
22e2A8sin~B8!# for q55/4

~1/Rl2!@e2R/j2e2Acos~B!2A3e2Asin~B!# for q54/3

~1/Rl2!@e2R/j2e2A(R/j)2116p(R/l)2
# for q53/2,

~17!
o-

on

th

th
where j5l/2Apa is the correlation length and the exp
nents

A2512p~R/l!2@~1/2!A~3/21a/3!21~3/4!1~3/21a/3!#,

B2512p~R/l!2@~1/2!A~3/21a/3!21~3/4!2~3/21a/3!#,

A82516p~R/l!2@~1/2!A~11a/4!2111~11a/4!#,

B82516p~R/l!2@~1/2!A~11a/4!2112~11a/4!#.

From these equations it is clear that the correlation functi
for qÞ1 have a leading term

G~R!'~1/Rl2!e2R/j, ~18!

minus some smaller additional terms which are absent in
Bose-Einstein~BE! case.

A. Correlation length

In order to compare these correlation functions with
standard correlation functionGBE(R), we first look at the
case of high temperatureT..Tc . Although Eq.~18! has
the same functional relation as
n
n

s

s

e

e

GBE~R!'~1/Rl2!e2R/jBE, ~19!

the parametera is the function@9#

a5
1

q21 F211S 22

Ap^n&~q21!3/2l3
S2~q!D 2(q21)/(523q)G ,

~20!

with

S2~q!5
1

3/221/~q21!
1 (

m51

`
~21!m

m!
~1/2!•••

~3/22m!
1

3/22m21/~q21!
. ~21!

In terms of the critical temperatureTc , the correlation length
j for high temperatures is given by the expression
1

j
52A p

q21S ^n&
G3/2~1,q! D

1/3S T

Tc
D 1/2F211S 22

ApG3/2~1,q!~q21!3/2S T

Tc
D 3/2

S2~q!D 2(q21)/(523q)G 1/2

, ~22!
,

-

where the functionG3/2(z51,q) was calculated in Ref.@9#.
In particular,G3/2(1,1)52.612 andG3/2(1,q) increases with
the value ofq. A simple inspection shows that the correlatio
length j is smaller than the correlation length for the sta
dard Bose-Einstein casejBE,

1

jBE
52ApS ^n&

2.612D
1/3S T

Tc
BED 1/2

ln1/2@2.612~T/Tc
BE!3/2#,

~23!

whereTc,Tc
BE. Figure 1 shows a comparison between the

two functions for several values of the parameterq. Clearly,
the correlation function decreases more rapidly asq increases
-

e

from the standard valueq51. At the critical temperature
j→` and the correlations become

Gc~R!'
1

Rlc
2

, ~24!

which, due to the inequalitylc.lc
BE, is smaller thanGc

BE.
Figure 2 showsa for T>Tcritical and some values ofq in
comparison to theq51 case. Since, atT.Tc , a is smaller
for q51, we find that the correlation function for all tem
peratures is larger for theq51 case.
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B. Critical behavior

In order to study the behavior at the critical temperatu
we need to expand the function

G3/2~z,q!5
2

Ap~q21!3/2

3E
0

` y1/2

@11y2~q21!ln z#1/(q21)21
dy ~25!

in powers ofa. It is clear from the previous discussion th
G3/2(z,q) becomes the well-known Bose-Einstein functi
g3/2(z) in the limit q→1. For these purposes, we apply t
same method used in Ref.@14#, which gives a power serie
of a by performing first a Mellin transformation of the func
tion and then applying the corresponding inverse transfo
The Mellin transform ofG3/2(z,q) is given by the equation

F3/2~s!5E
0

`

G3/2~z,q!as21da,

5
G~s!

~q21!3/21s (
m51

G„m/~q21!2~3/2!2s…

G„m/~q21!…
~26!

and the inverse transformation

G3/2~z,q!5
1

2p i Ec2 i`

c1 i` 1

~q21!3/21s
G~s!

3 (
m51

G„m/~q21!2~3/2!2s…

G„m/~q21!…
a2sds, ~27!

where the contour of integration closes on the left half-pla
With use of the approximation@15#

G„m/~q21!2~3/2!2s…

G„m/~q21!…
5

1

@m/~q21!#3/21s F11
b

m/~q21!

1
c

@m/~q21!#2
1•••G , ~28!

with the constants

b5
1

2
~3/21s!~3/21s11!,

c5
1

12

G~23/22s11!

G~3!G~23/22s21!
@3~5/21s!21s11/2#,

~29!

the functionG3/2(z,q) is written

G3/2~z,q!5
1

2p i Ec2 i`

c1 i` G~s!a2s

~q21!3/21s
@~q21!3/21sz~3/21s!

1b~q21!5/21sz~5/21s!

1c~q21!7/21sz~7/21s!1•••#ds. ~30!
,

.

.

The functionG(s) has simple poles ats52n with residues
(21)n/n! and the zeta functionz(w) has a simple pole a
w51 with residue equal to11. With use of the residue
theorem, the functionG3/2(z,q) is expressed as a power s
ries of a as follows:

G3/2~z,q!5
1

~q21!3/2 (
m51

(
n50

@2a~q21!#n

n!

3
G„m/~q21!23/21n…

G„m/~q21!…
1G~21/2!a1/2

2
1

6
~q21!2G~25/2!a5/21O~a7/2!. ~31!

A simple check shows that the series with integer powers
a reduces, asq→1, to the result in Ref.@14#, (n50

(2a)nz(3/22n)/n!. At lowest order ina we obtain

G3/2~z,q!'
1

~q21!3/2 (
m51

G„m/~q21!23/2…

G„m/~q21!…

1G~21/2!a1/2. ~32!

The series in eq.~32! approximates at lowest order to th
functionz(3/2) and the last term is identical to the standa
q51, result. Therefore, since fora'0 we haveG3/2(z,q)
'a1/2, definingt5(T2Tc)/Tc we find thata;t2. In addi-
tion, the correlation lengthj;lt21, as in the standard case
Since, near the critical temperature, thet dependence of the
functionsGn(z,q) is the same as in the case of the Bos
Einstein functionsgn(z) and the thermodynamic functions o
the two systems have the same functional form in terms
Gn and gn , the remaining critical exponents are also ind
pendent ofq.

III. CONCLUSIONS

In this paper, our main concern has been to study
long-range behavior predicted by thermodynamical syste
described by a factorized partition function. As pointed o
in the Introduction, this factorized partition function has be
shown to approximate well the partition function of none
tensive statistics. A calculation of the correlation functio
indicates that a Bose gas for theqÞ1 case is less correlate
than forq51. In particular, we showed that the correlatio
length for q51 is larger than forqÞ1 at all temperatures
and the critical exponents are independent ofq. Certainly,
our calculations can draw conclusions on the long-range
havior of a thermodynamical system in the factorization a
proach only. On the other hand, correlations in nonextens
thermodynamics should be studied with use of the Tsa
partition function. The fact that a Bose-Einstein gas obey
the studied factorized partition function is less correla
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than for the Boltzmann-Gibbs case implies that the lo
range behavior expected in nonextensive thermodynamic
lost when the Tsallis partition function is replaced by a fa
torized one. Thus, our results point out that the errors in
e
d

-
is

-
-

duced by forcing factorization, which could be not signi
cant for the evaluation of thermodynamic functions, are la
enough that the long-range behavior of Tsallis thermosta
tics cannot be studied within this factorization approach.
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