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Correlation functions in the factorization approach of nonextensive quantum statistics
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We study the long-range behavior of a gas whose partition function depends on a pacpanetérhas been
claimed to be a good approximation to the partition function proposed in the formulation of nonextensive
statistical mechanics. We compare our results, at large temperatures and at the critical point, with the case of
Boltzmann-Gibbs thermodynamics for the case of a Bose-Einstein gas. In particular, we find that for all
temperatures the long-range correlations in a Bose gas decrease when the galeparts from the standard
valueq=1.

PACS numbd(s): 05.30—d

I. INTRODUCTION
Zq:ER: [1+B(q—1)(Eg— uN)¥E-® (6)

The formulation of nonextensive statistical mechaiids
has raised numerous questions regarding its relevance to sy@nd the total energfgr==;n;e;. Due to the mathematical
tems with long-range interactions, long-range microscopicomplexity of the partition function in E(6), it has been-
memory, or multifractal propertie2]. This formalism can necessary to study the validity of certain approximation pro-
also be understood as a generalization of Boltzmann-Gibbsedures. Thus, the study of the consequences of nonextensiv-
statistics, opening the possibility to gain a theoretical insighity has been mainly focused on either assuming a value of
on the thermodynamics of systems whose behavior departs~1 [3] or by approximating the partition function in Eq.
from Boltzmann-Gibbs statistical mechanics. The general{6) by a factorized partition functiof4]
ized entropy

k z=I1 2 [1+B(a-Dnj(e;-w)]"@ D (@)
Sq:cl—_l(l_z.;‘ p%) 1) =0 n;=0 = e
The factorization approach has been shd®jto be a good
is a function of the probabilitpr, for the ensemble to be in gpproximation to the Tsallis partition function outside a cer-
the stateR and a real parametex Equation(1) becomes the  tain narrow temperature interval that shifts to higher values
Shannon entropy ag—1. In addition, Tsallis’ entropy of T when the number of energy levels increases. An appli-
shares all the properties of the Shannon entropy except thahtion to the Ising model and blackbody radiation can be
of additivity. Considering two independent systelsand  found in Refs.[6] and[7], respectively. In this approxima-
%', the entropyS, satisfies the pseudoadditivity property  tion, the average number of particles with eneegis given

by the function
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[1+B(d—1)(s—p)]" @ Vta
The probability distribution that results from extremizing the
entropy with the constraints wherea=0,—1,+1 for Maxwell-Boltzmann, Bose-Einstein,
and Fermi-Dirac cases, respectively. It is important to remark
> pr=1 (3)  that the functionn) has also been obtaing¢d] by extrem-
R izing the entropy related to the generalized dimensions of a
and fractal set. It has also been pointed plL@] that nonextensive
thermodynamics could also be understood in termg dé-
(E>=E PRER (4) formations and possibly with the theory of quantum groups.
R Along this line of work, in Ref[9] we made a study of the
is given by the equation basic thermodynamics that result from the particle distribu-
11— tion functions in Eq(8) for classical and quantum gases. In
R:[1+'B(q_l)(ER_“N)] - (5) that article we showed that the high-temperature behavior is
Zy ' consistent with the thermodynamical limit provided that the

with the partition function internal energy is calculated according to the equation
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FIG. 1. The functionf =27Y2n)3%, where(n) is the average
number of particles per volume aridis the correlation length at FIG. 2. The behavior of= — Bu as a function of the tempera-
h|gh temperatures for the Casesq}f:]_’e/S,S/Z as a function of ture for the caseq:1,6/5,3/2, indicating that for low temperatures
T/ T itical- Teriticas FEfErs to the critical temperature for each value of & Bose-Einstein gas is more strongly correlateddferl.
g. This graph shows that the correlation length decreases as the
value ofq increases. <1.5. The correlation for a Bose gas with particle distribu-
tion according to Eq(8) is given by
By introducing the usual creation and annihilation operator _
formalism, we found that the boson Hamiltonian that leads to 1 e'kR

the particle distribution, fom=—1, in Eq.(8) is written as G(R)= V] ; [1+8(q—1)(e—p) M@ D1’ (1)

R=2 (sj_mgj b, (10) As usual, this summation can be approximated by an inte-
j=0 gration overk, leading after integration over the angles for
d=3 to the equation

where the operatog; and its adjoint&sj satisfy a deformed

boson algebra. However, a comparison of the heat capacity G(R)= (No) 2
. . . . Y Uan120\ 35— 1)\512
and entropy functions, in R€f9], for systems with a particle RN g -1)
distribution function as given by E@8) with those for Bose " %
and Fermi gases described by quantum group invariant X f X3y [1+a(q—1)+x2]"i@-1)
Hamiltonians[11] shows that nonextensivity is unrelated to 0o =1
guantum group invariance. I 27 V2RYN G T)dx, (12

In this paper we calculate the correlation function for bo-
son systems with a particle distribution function as given by o 2,2
Eq. (8). Our main motivation in studying this system is two- erere the new v_arlablg = A(a—1)k*%/2m and, as usual,.
fold. First, it is of theoretical interest to study a thermody- a= _B'“. and\ is the thermal wavelength. The integral in
namics system which obeys a statistical mechanics that geJ‘F—q' (12) is tabulated 12]
eralizes Boltzmann-Gibbs statistics. Second, a calculation of
the correlation functions will give us an insight into the long- Jw X ldx= K, .(cb)
range behavior dependence of these thermodynamical sys- Jo (x2+c2)~*1 2T (n+1) T
tems on the parametey. Our calculations will show in a (13
concrete fashion the relation betwegrand long-range be-
havior, and will indicate whether the thermodynamics resultwhere —1<Rev<Re(2u+3/2), ¢>0, and b>0. It is
ing from Eq. (8), proposed in Ref[4], has the long-range simple to check that all these inequalities are satisfied for all
behavior expected to be present in nonextensive thermodyhe allowed values af in the interval Z=q=<1.5. Defining a
namics. In Sec. |l we calculate the correlation function forlength parametegx<<i,

g#1 and discuss the results for some particular values of
this parameter. We specialize our discussion to the behavior A g-1
near the critical temperatufg, and at large values of. In X= 2Jm Vita(qg-1) (14)

Sec. lll we summarize our results.

J,(bx) cVHpH

and by use of the integral representation
Il. CORRELATION FUNCTIONS

According to our previous worf9], the parameteq can- K, (zX) =
not be any real number but its values are restricted to those : x'T(1/2)
such that 1/¢—1) is an integer. In addition, the thermody-
namic functions are well defined only in the intervaky the correlation function reduces to the expression

I'(v+ 1/2)(22 Vfoc cogq xt) 15

0 (t2+22)v+l/2 !
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n/(q—1)—1

dt. (16)

o]

(RIx)?
[1+a(q—D)][t?+(R/x)?]

G(R)

= —WR)\Z(q—l)fO cos{t)nz,1

Once we perform the summation, we get a set of integrals in terms of elementary functions. These integrals are all tabulated
[13] and the correlation function for some valuesgofollows,

(1/R)\2)[e7R/§_ e V(RI§)2+327T(R/)\)2_ zefA'Sin(Br)] for gq= 5/4

G(R)={ (UR\*)[e ¥é—e AcogB)—y3e “sin(B)] for q=4/3 (17
(1/R)\2)[67R/§_e*V(R/§)2+16ﬂ'(R/)\)2] for q:3/2'
|
where é=\/2\ma is the correlation length and the expo- Gge(R)~(1/R\?)e~ R/éee, (19

nents

A?=12m(RIN)[(L/2V(3/2+ al3)?+ (3/4) + (3/2+ al3)], the parameter is the function[9]

B2=12m(R/N)?[(1/2) V(3/2+ al3)?+ (3/4) — (3/2+ al3)],

1 P 2(q-1)/(5-30q)
A2=16m(RIN)[(L2)V(1+ ald)?+ 1+ (1+ ald)], a=———-1+ ,
m(RINZ[(12)(1+ ald) (1+al4)] -1 Trmia 1 =@
B'2=16m(R/IN)?[(1/2) V(1+ ald)’+1—(1+ ald)]. (20)
From these equations it is clear that the correlation functions
for q#1 have a leading term with
G(R)~(1/R\?)e R, (18)
_ y . . 1 o (=T
minus some smaller additional terms which are absent in the S,(q)= 3 1ia—1) + 2 ——(1/2)---
Bose-EinsteinBE) case. (g—1) m=1 m!
1
A. Correlation length (3/2—m) (21

3/2-m—-1/(q—1)"
In order to compare these correlation functions with the

standard correlation functioGgg(R), we first look at the

case of high temperaturé>>T,. Although Eq.(18) has Interms of the critical temperatufie. , the correlation length

the same functional relation as ¢ for high temperatures is given by the expression

1 T <n> 1/3 T 1/2|
el
£ q—11Gsp(1,9) Te

—1+

-2 T)32 2(q—1)/(5-3q)]1/2
= 22
ﬁes/xl,qxq—lﬁ@(n) Sz(q)) l @

where the functiorGs,(z=1,q) was calculated in Ref9].  from the standard valug=1. At the critical temperature,
In particular,G35(1,1)=2.612 andG3»(1,q) increases with £—o and the correlations become

the value ofg. A simple inspection shows that the correlation
length ¢ is smaller than the correlation length for the stan-
dard Bose-Einstein cas&F,

i:m< <n>2)1'3

£5E 2.61

1
G¢(R)~ =~ (24

T 1/2 c
T—BE> InYq2.612 T/TEE)32],
c

(23 which, due to the inequalitx .>\EF, is smaller tharGEE.

Figure 2 showsa for T=T;;.a @and some values af in
whereTc<TE’E. Figure 1 shows a comparison between thesecomparison to the=1 case. Since, &>T., « is smaller
two functions for several values of the parameteClearly, for g=1, we find that the correlation function for all tem-
the correlation function decreases more rapidly asreases peratures is larger for thg=1 case.
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B. Critical behavior

CORRELATION FUNCTIONS IN THE FACTORIZATION . ..

331

The functionI'(s) has simple poles &= —n with residues

In order to study the behavior at the critical temperature(—1)"/n! and the zeta functio(w) has a simple pole at

we need to expand the function

2
Gsp(z,0)= Trq—1)%

1/2

J|
0

in powers ofa. It is clear from the previous discussion that
G3x(z,q) becomes the well-known Bose-Einstein function
032(2) in the limit g—1. For these purposes, we apply the
same method used in Ré¢fl4], which gives a power series
of a by performing first a Mellin transformation of the func-

y
[1+y—(g—1)Inz]¥@ V-1

dy (29

w=1 with residue equal to-1. With use of the residue
theorem, the functioi®G35(z,q) is expressed as a power se-

ries of a as follows:

I'(m/(q—1)—3/2+n)
r(m/(q—1))

+T'(—1/2) a*?

- %(q— 1)’T(-5/2)a*?+0(a™. (31

tion and then applying the corresponding inverse transform.

The Mellin transform ofG/5(z,q) is given by the equation

Faas)= fo Ga(z,0)a° Yda,

I'(s) I'(m/(q—1)—(3/2)—5s)

= 26
(1725 & T(mi(g-1)) 29
and the inverse transformation
1 (c+i= 1
G3/2(Z.Q)—ﬁfcqx mr(s)
I'(m/(g—1)—(3/2)—s
(s La-)-@32-9 oo

I'(m/(q-1))

m=1

A simple check shows that the series with integer powers of
a reduces, asg—1, to the result in Ref[14], 2,-¢
(—a)"¢(3/2—n)/n!. At lowest order ina we obtain

I'(m/(g—1)—-3/2
I'(m/(q—1))

1
Gaplz,0)~ (q—1)%2 mE:1

+T(—1/2)a' (32

The series in eq(32) approximates at lowest order to the
function £(3/2) and the last term is identical to the standard,
g=1, result. Therefore, since far~0 we haveGs,(z,q)
~a*?, definingt=(T—T.)/T. we find thata~t?. In addi-

where the contour of integration closes on the left half-planetion, the correlation lengti~\t™*, as in the standard case.

With use of the approximatiofiL5]

b

F(m/(q—l)—(3/2)—s)_ 1
1 m/(q—1)

I'(m/(q—1)) [mi(g—1)]3%3

C

.|, (28
[m/(q—1)]? 29

with the constants

b

1
5(3/2+ S)(3/2+s+1),

1 T(-32-s+1)
T 2TBIN(—32-s-1)

[3(5/2+5s)2+s+1/2],
(29

the functionG;/x(z,q) is written

1

2 i

c+ie T(S)a” S

jc—iw (q_1)3/2+5
+b(q—1)%2"3¢(5/2+s)
+c(q—1)"sg(7/12+s)+ - - - ]ds.

Galz,0)= [(q—1)%%"%¢(3/2+5)

(30

Since, near the critical temperature, theependence of the
functions G,(z,q) is the same as in the case of the Bose-
Einstein functiong,(z) and the thermodynamic functions of
the two systems have the same functional form in terms of
G, andg,, the remaining critical exponents are also inde-
pendent ofg.

Ill. CONCLUSIONS

In this paper, our main concern has been to study the
long-range behavior predicted by thermodynamical systems
described by a factorized partition function. As pointed out
in the Introduction, this factorized partition function has been
shown to approximate well the partition function of nonex-
tensive statistics. A calculation of the correlation functions
indicates that a Bose gas for thiec 1 case is less correlated
than forq=1. In particular, we showed that the correlation
length forqg=1 is larger than foig#1 at all temperatures,
and the critical exponents are independentgofCertainly,
our calculations can draw conclusions on the long-range be-
havior of a thermodynamical system in the factorization ap-
proach only. On the other hand, correlations in nonextensive
thermodynamics should be studied with use of the Tsallis
partition function. The fact that a Bose-Einstein gas obeying
the studied factorized partition function is less correlated
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than for the Boltzmann-Gibbs case implies that the long-duced by forcing factorization, which could be not signifi-
range behavior expected in nonextensive thermodynamics ant for the evaluation of thermodynamic functions, are large
lost when the Tsallis partition function is replaced by a fac-enough that the long-range behavior of Tsallis thermostatis-
torized one. Thus, our results point out that the errors introtics cannot be studied within this factorization approach.
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